Search results

Search for "rutile (110) surface" in Full Text gives 3 result(s) in Beilstein Journal of Nanotechnology.

Adsorption behavior of tin phthalocyanine onto the (110) face of rutile TiO2

  • Lukasz Bodek,
  • Mads Engelund,
  • Aleksandra Cebrat and
  • Bartosz Such

Beilstein J. Nanotechnol. 2020, 11, 821–828, doi:10.3762/bjnano.11.67

Graphical Abstract
  • molecules into the Sn-down conformation was observed either after sample annealing at 200 °C or as a result of tip-induced manipulation. Room-temperature measurements conducted for a coverage of close to a monolayer showed no tendency for molecular arrangement. Keywords: rutile (110) surface; scanning
  • assume that the shape asymmetry of SnPc may also appear as a result of the presence of the surrounding molecules, or it can arise from the corrugated nature of the rutile (110) surface including its defects. To confirm the identification of Sn-up and Sn-down geometries, we performed DFT calculations. A
  • freely between both geometries. On Ag(111), the free switching appeared in subsequent layers. This mainly suggests that the surface influences the switching process and indicates that the Sn-down Pc position is preferable. Here, tip-induced irreversible switching was observed on a rutile (110) surface
PDF
Album
Supp Info
Full Research Paper
Published 26 May 2020

Ordering of Zn-centered porphyrin and phthalocyanine on TiO2(011): STM studies

  • Piotr Olszowski,
  • Lukasz Zajac,
  • Szymon Godlewski,
  • Bartosz Such,
  • Rémy Pawlak,
  • Antoine Hinaut,
  • Res Jöhr,
  • Thilo Glatzel,
  • Ernst Meyer and
  • Marek Szymonski

Beilstein J. Nanotechnol. 2017, 8, 99–107, doi:10.3762/bjnano.8.11

Graphical Abstract
  • investigation of molecular adsorption is titanium dioxide [11][12]. The most stable and the most studied face of TiO2 is the rutile (110) surface. In the context of adsorption studies, it is important to note that the (110) face of rutile usually contains numerous oxygen vacancies, often filled with hydroxy
PDF
Album
Full Research Paper
Published 11 Jan 2017

In situ scanning tunneling microscopy study of Ca-modified rutile TiO2(110) in bulk water

  • Giulia Serrano,
  • Beatrice Bonanni,
  • Tomasz Kosmala,
  • Marco Di Giovannantonio,
  • Ulrike Diebold,
  • Klaus Wandelt and
  • Claudio Goletti

Beilstein J. Nanotechnol. 2015, 6, 438–443, doi:10.3762/bjnano.6.44

Graphical Abstract
  • five (and even higher) times the substrate periodicity [1][5]. For a single ML coverage, a c(6 × 2) honeycomb lattice was observed on the rutile (110) surface [5]. Additional structures, perpendicular to the primary rows (namely, along the direction) and forming a bi-dimensional network, have been
  • areas free of calcium are visible. We have reported that in atomically resolved images of the rutile (110) surface in water, a 2× periodicity is measured along the [001] direction, suggesting the presence of an adsorbed overlayer (very likely water molecules) [18]. In the present experiment, the quality
PDF
Album
Full Research Paper
Published 12 Feb 2015
Other Beilstein-Institut Open Science Activities